GBS 724

Choosing the metabolomics platform

Stephen Barnes, PhD 4-7117; sbarnes@uab.edu

So, I have my samples – what's next?

- You've collected your samples and you may have extracted them
 - Protein precipitation with 4 volumes of methanol
 - OR partition across a chloroform-methanolwater two-phase system
 - Aqueous fraction has the hydrophilic metabolites
 - Chloroform fraction has the lipids
- Now it's time to select how to measure the metabolites

Choosing targeted or untargeted approaches

- A targeted approach requires that you know what you want to measure
 - It can be hypothesis-driven
 - Depends on the way you phrase the question and interpret the data
 - If you asked which of member(s) of Krebs cycle was(were) changed by a treatment, you may have to adjust the probabilities for multiple comparisons
 - On the other hand, if you were testing how much of the carbon atoms entering the Krebs cycle are converted to glutamate in response to a particular treatment, you may be able to model this from multiple metabolite levels

Targeted methods

These are principally based on MS-MS methods – see later

NMR vs MS-based methods

- NMR (Nuclear Magnetic Resonance)
 - It's an untargeted approach
 - Will be described in detail by Dr. Krishna on Jan 15
 - ADVANTAGE: does not consume the sample
 - DISADVANTAGE: Has limits on the metabolites that can be observed
 - Alone it measures all metabolites at the same time
 - However, it can be combined with LC

Mass spectrometry methods

- Direct infusion (SWATH lipidomics)
 - We will discuss this later
 - Based on the chloroform-methanol extracts
 - Untargeted
 - Used with electrospray interface

Gas chromatography

- For naturally volatile metabolites
- Or those that can be derivatized to form stable volatile forms
- Generally limited to compounds with MW <400
- There are extensive GC-MS compound databases
- Since mid-70s, capillary open tubular GC
- Will be discussed in more detail by Sara Cooper (Hudson Alpha) on Jan 20

LC-MS

- The principal advantage of this method is that doesn't necessarily require derivatization
 - There are circumstances where reagents can convert compounds that isomerize into a stable form
 - Can resolve 1,000s of metabolites
- There are several disadvantages
 - Lower chromatographic resolution than GC (packed as opposed to open tubular columns)
 - Less extensive metabolite libraries
 - I will discuss LC-MS in more detail on Jan 22

A mass spectrum

- ESI in LC-MS is a soft ionization process
 - Generates a molecular ion
 - [M+H]+ or [M-H]-
 - In metabolomics it can also be [M+Na]⁺, [M+K]⁺ and [M+NH₄]⁺ or [M+Cl]⁻
 - Both negative ion and positive ion data are typically collected

What is the mass of an ion?

- It's the sum of the atomic weights of the atoms comprising the molecule +/- the mass of a proton (if the ion is generated by the gain or loss of a proton)
 - C = 12.00000
 - H = 1.00782 Proton mass = 1.007276
 - N = 14.00307 Electron mass = 0.000549
 - 0 = 15.99491
 - -P = 30.97376
 - -S = 31.97207

Citrate

• $C_6H_7O_7$ is the [M-H]⁻ ion

OH

- $m/z = 6 \times 12.00000 + 7 \times 1.00783 + 7 \times 15.99491 + 0.000549 = 191.01973$
- This is the monoisotopic mass of citrate

Mass defect

- On the scale when ¹²C is 12.00000, the other elements have non-integer masses.
- The integer mass is called the nominal mass (the total number of protons and neutrons)
- The difference between the actual and nominal mass is called the mass defect.
 - For H, 1.00783 1.00000 = +0.00783
 - For O, 15.99491 16.00000 = -0.00509

Mass defect for citrate

- For the formula of $C_6H_7O_7$, the nominal mass is 72+7+112 = 191
 - The 7 H atoms will lead to an increase in mass of 7 x 0.00783 = 0.05481
 - The 7 O atoms will reduce the mass by 7 x 0.00509 = 0.03563
- The mass difference is +0.01918
- The observed mass also has to include the electron (+0.00055), giving the observed mass defect of +0.01973

Selecting the mass spectrometer

- As you can see, it is necessary to use an instrument to measure:
 - The mass of the metabolites accurately
 - To provide sufficient mass resolution to distinguish the isotopes associated with each metabolite
- There are several types of MS detectors
 - Quadrupole, ion trap, time-of-flight (TOF), Orbitrap and Fourier Transform-Ion Cyclotron Resonance (FT-ICR)
 - These will be discussed in more detail by Dr. Renfrow on Jan 25

Selected ion monitoring

- The summation of all the ions collected in a GC or LC analysis is called the total ion current (TIC) and produces a total ion chromatogram
- By selecting a particular m/z value, one can see where a metabolite's molecular ion elutes from the column
 - This produces a selected ion chromatogram (SIC or XIC)
 - The quality of the SIC depends on the mass accuracy and resolution of the collected data

Uniqueness of molecular ions

- The molecular ion, even when measured with the highest possible accuracy, is not a unique descriptor
- There are many, many theoretical possible structures for a given mass and hence empirical formula
 - We'll discuss this more later once we have data to analyze

Have I just measured genistein?

 $[M+H]^+ = 271.060 \, m/z$

Compounds in ChemSpider

MSMS

- A second mass spectrum (MSMS) that is informative arises from isolating the molecular ion
- The molecular ion is heated, either by collision with neutral gas (quadrupole, ion traps) or by using IR radiation (FT-ICR)
 - The extra energy increases the stretching of critical bonds, leading to dissociation of the molecular precursor ion into charged product ions
 - These generate the MSMS spectrum for a metabolite
 - Ion traps can also isolate a product ion and create MSⁿ spectra

Measuring a mass transition

- Instead of measuring the full MSMS spectrum, ions from the MSMS can be individually measured
- This is referred to as a mass transition from the molecular or precursor ion to a specific product ion
- It is also known as reaction ion monitoring

Analysis of succinate

Succinate is displayed in the mass spectrum at m/z = 117

This type of scan will verify the **precursor ion**, also known as the **parent ion**.

Multiple reaction ion monitoring

Ionizer

Quantitative analysis of metabolites in a complex mixture carried out using a triple quadrupole instrument

Based on precursor ion/product ion pair(s)

Courtesy, John Cutts

How many MRM transitions?

- Acquisition can be as little as 2 msec, but acquisition time determines sensitivity
- Fast switching electronics can measure as many as 500 different transitions per second
- Since measuring the area under a peak requires 10 data points, the number of transitions measured have to be matched against the shape and width of the chromatographic peaks – to be discussed in more detail later

Targeted vs untargeted methods

- If we know what the metabolites to be measured are (from previous untargeted analyses, or prior knowledge), then a MRM approach is the best way to go since allows quantitative analysis of possibly 100s of metabolites
- If there is no hypothesis, but instead you want to generate hypotheses, then the untargeted approach is better.

Future developments in platform analysis

Capillary-electrophoresis

Open tubular LC

Features of CE-MS

- Capillary's distal end is porous to allow ion flow
- Electrical contact for the CE is achieved through an ESI needle filled with conductive fluid
- ESI's electrical contact is achieved through the protruding capillary tip
- Low flow at the tip terminus instantly generates a fine spray when ESI voltage is applied
- All electrochemistry associated with electrolysis of water is hereby decoupled from the spray
- Capillary inlet and exit are of the same dimension, reducing the clogging often associated with nanoscale techniques
- ESI is generated at lower voltages, which reduces the risks of oxidation artifacts

Advantages of CE-MS

- It is a nanosystem with no particles in its path
- The low flow rate (<10 nl/min) is conducive to very high sensitivity
- High resolving power

Advantages of increased peak capacity

- LC in LC-MS has been described as 'lousy' chromatography by the GC community
- If the chromatographic run used in metabolomics is 20 min long, and there are 4,000 metabolites, that means 200 are eluted each minute, or 3-4 per second
- If there are more metabolites (and there are), we need better chromatography
 - Open tubular columns, not smaller particles, is the answer

Open tubular LC columns Packed Capillary Porous Layer Open Wall Coated Open Tubular Column Column Tubular Column (I.D.<1mm) (PLOT) Column (WCOT) Column Particle Layer Film Thickness Thickness 5-50 µm 0.1-0.8 µm Tube I.D. Tube I.D. 320-530 µm 100-530 μm

Features of open tubular columns

- Very low back pressure
- Columns can be very long (open tubular GC columns are often up to 100 meters)
- Low capacity since there is very little liquid phase on the top of the column for the sample components to stick to
 - Compensated for by the MUCH increased peak resolution, i.e., one can load a smaller amount of the sample

Open tubular columns - preparation

Use pressure bomb to load fluids into 10 or 50 μm ID capillary

- Treat with 1 M NaOH
 - Seal and place in oven at 100°C for 1 h
 - · Flush with water and acetonitrile to completely dry
- Treat with 5 mg 2,2-diphenyl-1-picrylhydrazyl dissolved in a mixture of 300 μL $\gamma\text{-MAPS}$ and 700 μL anhydrous DMF
 - Seal and heat to 110°C for 6 h
 - · Flush and wash with acetonitrile to completely dry
- Treat with 5 mg azobisisobutyronitrile, 942 μL ethanol, 200 μL styrene, and 200 μL divinylbenzene
 - Seal and heat at 74°C for 16 h

Rogeberg M, et al J Sep Sci. 2013 Sep;36(17):2838-47.

